

Introduction to evaporative pre-cooling

June 6, 2023

Safety minute and house keeping items

Food and beverages

- Help yourself throughout
- Garbage cans in the back

Restrooms

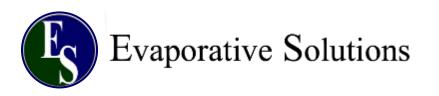
Through the atrium

Emergency protocols

- Emergency exits
- Meeting location/find a Platte River employee

Upcoming events

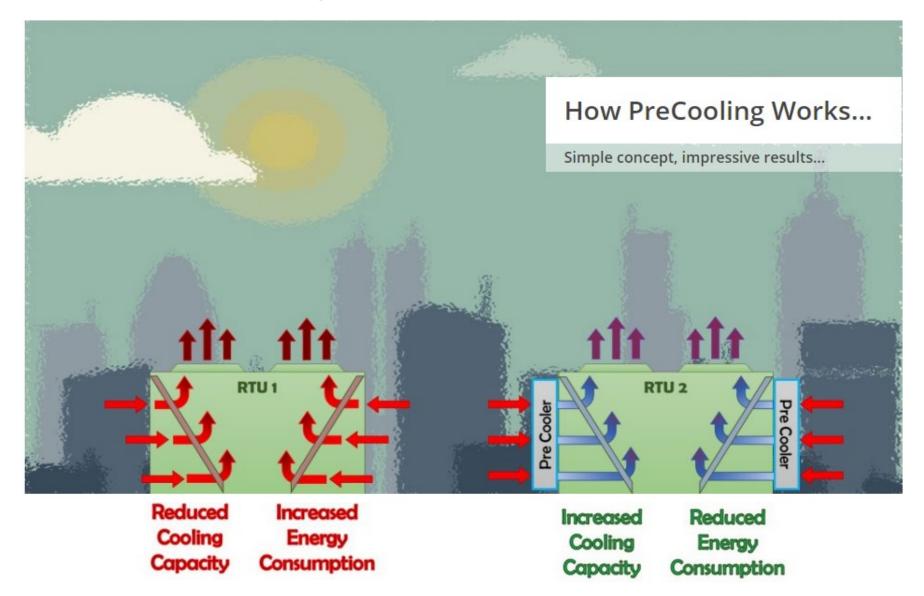
- July Efficiency Works Business tour more information available soon
- August Fort Collins exterior lighting code updates
- Quarterly Selling Energy webinars for listed service providers with licenses Let us know if you'd like to become a listed service provider and receive a license
- Service provider 1-on-1's Send us an email to schedule
- November Service provider social and awards


Register for Efficiency Works events: https://efficiencyworks.org/resources/events/

Bryan Curtis

Evaporative Solutions

Providing the Highest Quality PreCooling Systems for Air-Cooled Condensers



Providing the Highest Quality PreCooling Systems for Air-Cooled Condensers

Impact of Elevated Ambient Temperatures on Capacity and Energy Input to a Vapor Compression System – Literature Review

Letter report for ARTI 21-CR Research Project: 605-50010/605-50015

S. Yana Motta and Piotr A. Domanski National Institute of Standards and Technology Gaithersburg, MD

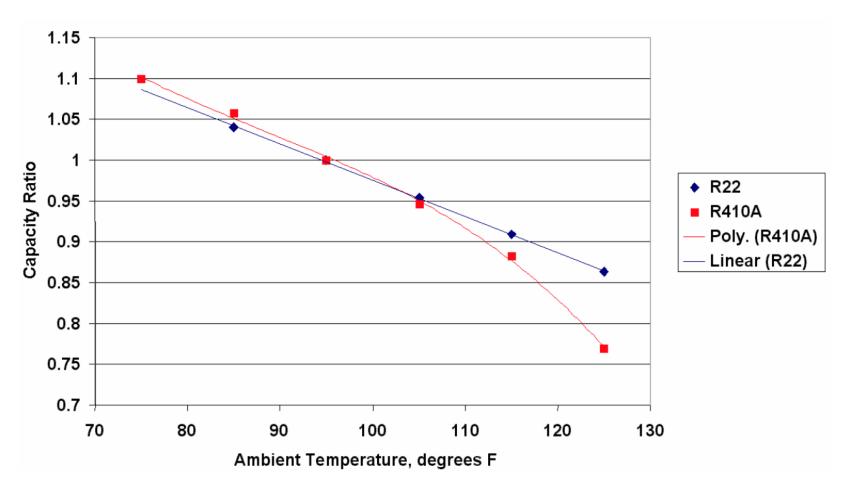


Figure 5. Comparison of capacity loss versus ambient temperature, split system A/C, 12-13 SEER (Wells et al., 1999).

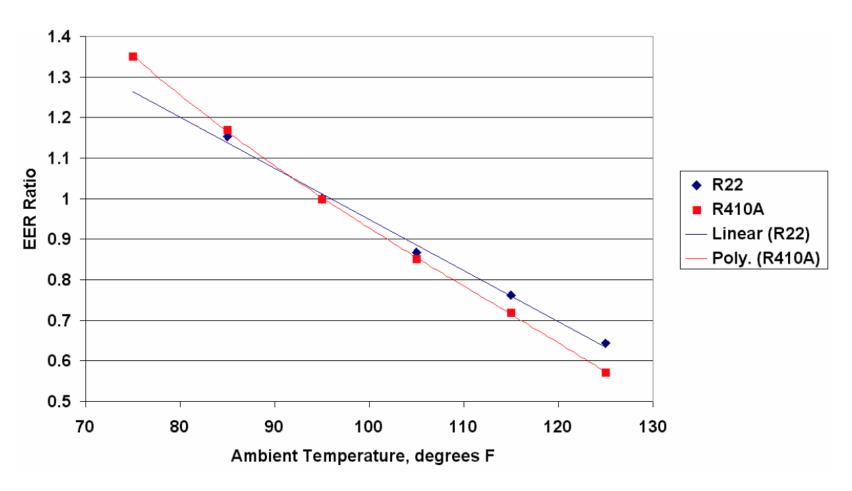


Figure 6. Comparison of EER loss versus ambient temperature, split system A/C, 12-13 SEER (Wells et al., 1999).

An EDISON INTERNATIONAL® Company

Performance Evaluation of Rooftop Air Conditioning Units At High Ambient Temperatures

Ramin Faramarzi, Bruce Coburn, Rafik Sarhadian, Scott Mitchell, and R. Anthony Pierce, Southern California Edison

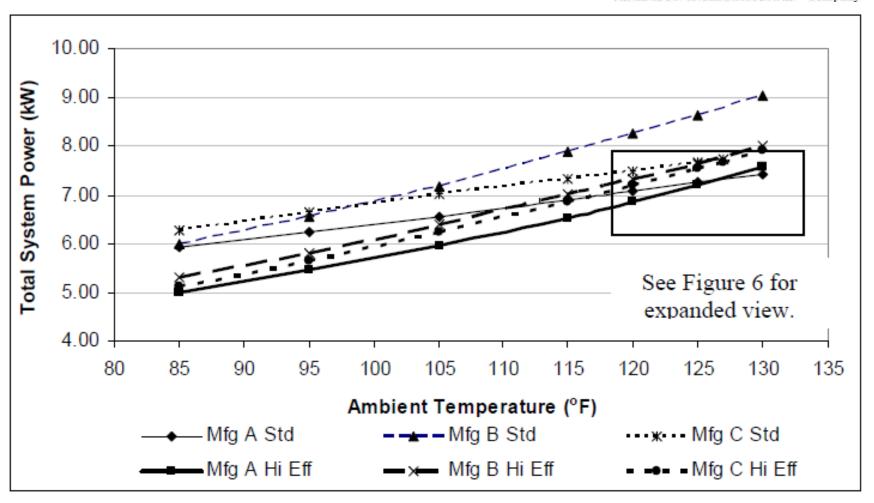


Figure 5. Total System Power Consumption Based on RTTC Test Data for All Six Standard and High Efficiency Units Subject to Various Ambient Temperatures

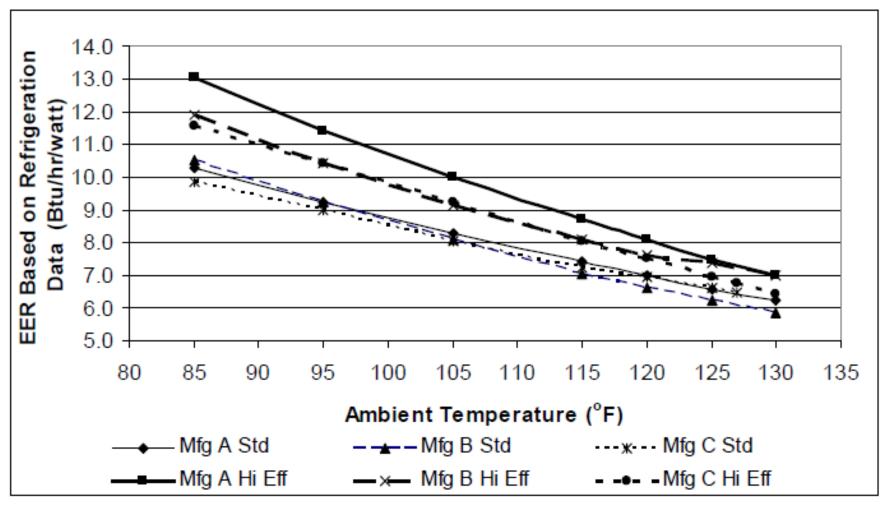
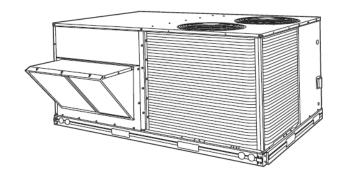



Figure 8. EERs Based on RTTC Refrigeration Side Test Data for All Six Standard and High Efficiency Units Subject to Various Ambient Temperatures

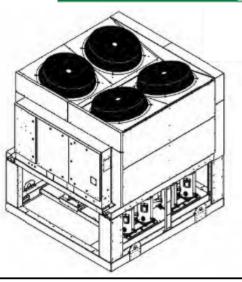
Small Packaged Unit Performance Data (12.5 Tons)

50HJ014 (121/2 TONS)												
LCWT (F)		Air Temperature Entering Condenser (F)										
		75	85	95	105	115	125					
	TC	142.0	135.6	126.3	115.7	104.4	93.9					
45	SHC kW	123.6 8.95	120.9 9.97	116.5 11.01	111.2 12.09	104.2 13.22	93.8 14.44					

Increase in Tons

11%

Decrease in KW


19%

Increase in SHC

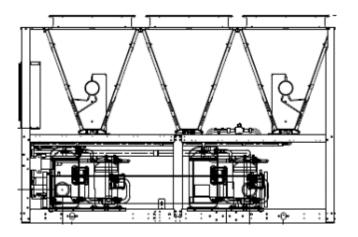
Mid-size Scroll Compressor Chiller Performance Data (50 Ton)

	Ambient Air Temperature														
LWT	LWT 75°F			85°F			95° F			105° F			115°F		
(°F)	Unit	Power	Unit	Unit	Power	Unit	Unit	Power	Unit	Unit	Power	Unit	Unit	Power	Unit
	Tons	kWi	₽	Tons	kWi	⊞ R	Tons	kWi	₩	Tons	kWi	Ħ	Tons	kWi	₽
44	53.8	46.7	13.8	51.1	51.5	11.9	48.1	57.1	10.1	45.0	63.4	8.5	41.6	70.6	7.1

Increase in Tons

11%

Decrease in KW


18%

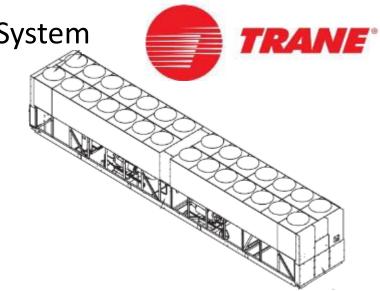
Increase in EER

Large Scroll Compressor Chiller Performance Data (100 Ton)

MODEL: YLAA0100SE												IPLV= 14.3						
	AIR TEMPERATURE ON - CONDENSER (°F)																	
LCWT		75.0			80.0			85.0			90.0			95.0			100.0	
(°F)	TONS	KW	EER	TONS	KW	EER	TONS	KW	EER	TONS	KW	EER	TONS	KW	EER	TONS	KW	EER
44.0	107.6	89.3	13.2	104.7	94.2	12.3	101.8	99.3	11.3	98.9	104.8	10.5	95.8	110.7	9.6	92.1	116.5	8.8

Increase in Tons

11%


Decrease in KW

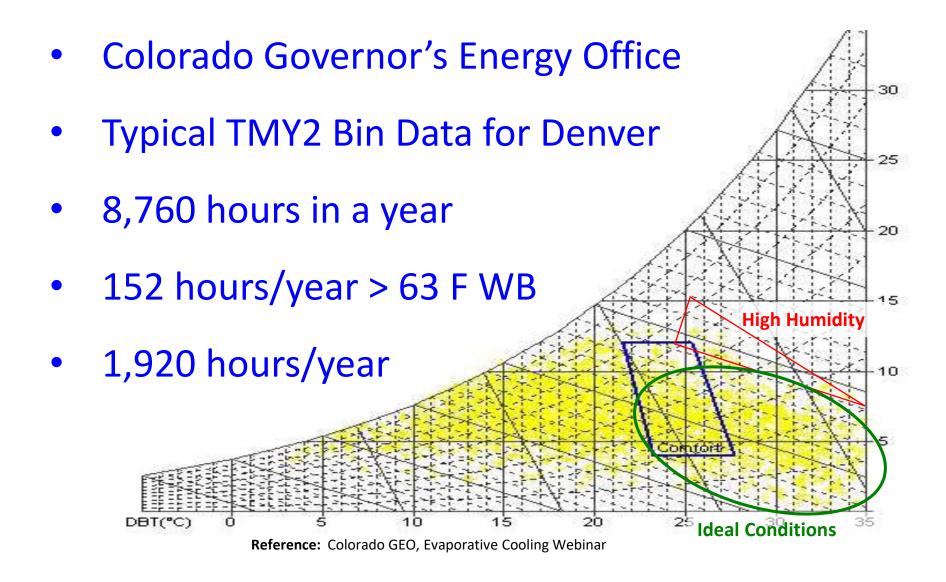
19%

Increase in EER

Air-Cooled Rotary Liquid Chiller Performance Data (500 Ton)

Table P-1. 60 Hz	able P-1. 60 Hz standard efficiency machines in English units												
			Condenser Entering Air Temperature (F)										
		85				95		105			115		
Evaporator Leaving Water Temperature (F)	Unit Size Model RTAC	Tons	kW input	EER	Tons	kW input	EER	Ton	kW input	EER	Tons	kW input	EER
44	500 STD	515.8	519.3	11.0	483.0	560.6	9.6	448.8	607.4	8.3	413.3	659.7	7.1

Increase in Tons


13%

Decrease in KW

15%

Increase in EER

Denver's Climate on the Psychrometric Chart

Many chiller manufacturers offer adiabatic precooling as a factory installed option

What NOT to do...

What NOT to do continued...

...and this is why.

There is a better way!

But what about the water usage!?!?!?!?!?

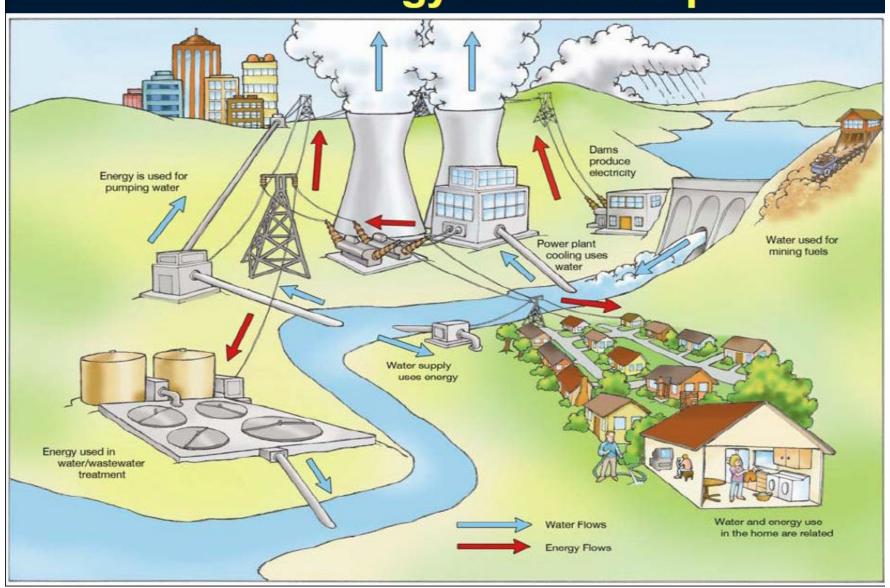
We are in a drought!!!!

How much water will be wasted!?!?!

What about the cost of the water!?!?!?

Evaporative PreCooling Actually Saves Water!

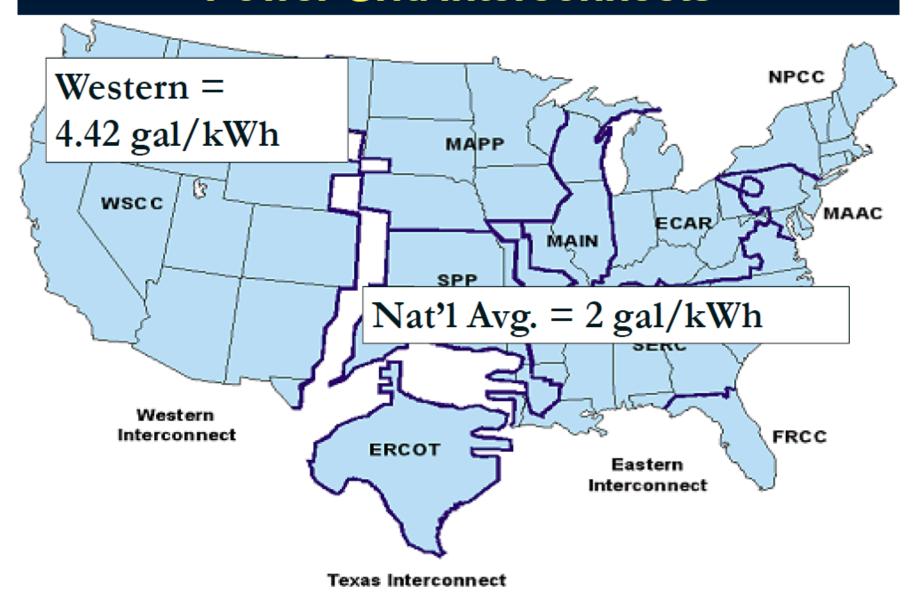
...and Money!



Critical Natural Resources

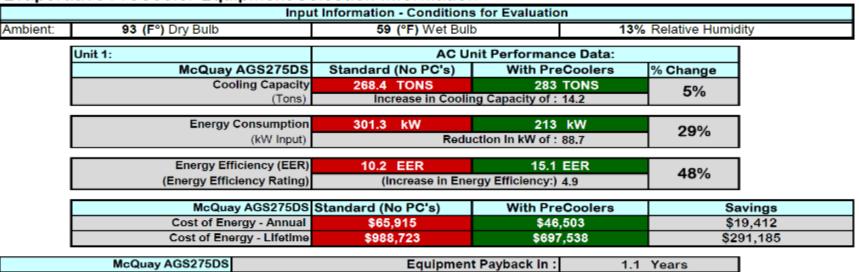
- Water and Energy are both Critical Resources
- Water and Energy Production are Interrelated
 - Water is needed to produce Energy
 - Energy is needed to store and transport Water

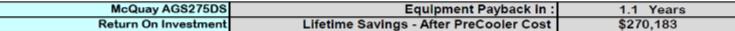
Water Energy Relationship

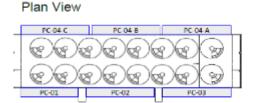

Resource Relationship: Water in Energy

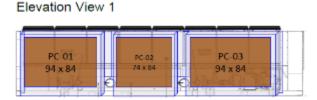
 2003 National Renewable Energy Lab report:

On average 2 gallons of water consumed per 1 kWh electricity generated in the US

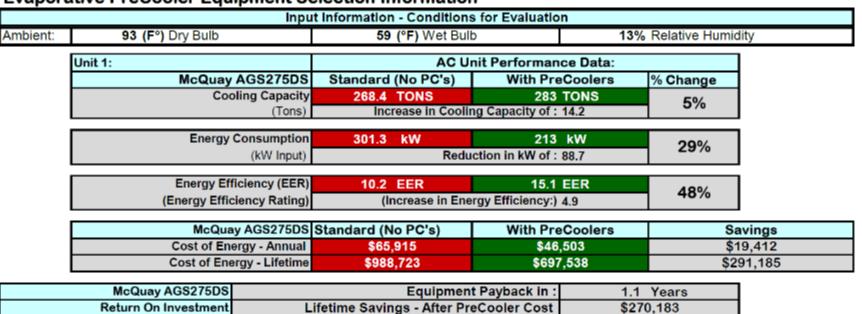



Power Grid Interconnects





Evaporative PreCooler Equipment Selection Information



Water Saved by PreCoolers 4.42 Gallon per kWh 176473 kWh Saved Water Saved 780009 344,636 Water Used Net Water Savings 435,373

Evaporative PreCooler Equipment Selection Information

PC-03

Plan View	Elevation View 1	Elevation View 2					
PC-04-C PC-04-B PC-04-A	PC-01 PC-02 PC-03 94 x 84	PC-04-A PC-04-B PC-04-C 96 x 78 96 x 78					

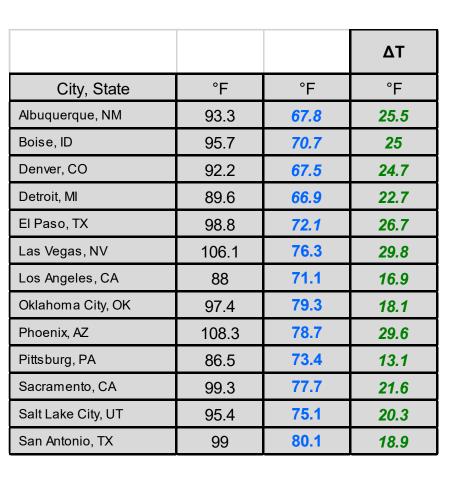
Additional PreCooler Operating Costs: kWh Saved = 176,473								
Water Consumption	344,636	Gallons per Year						
Cost/1000 Gallons	\$4.85	Denver Water	Commercial Rate					
Water Cost	\$1,672	Annual						

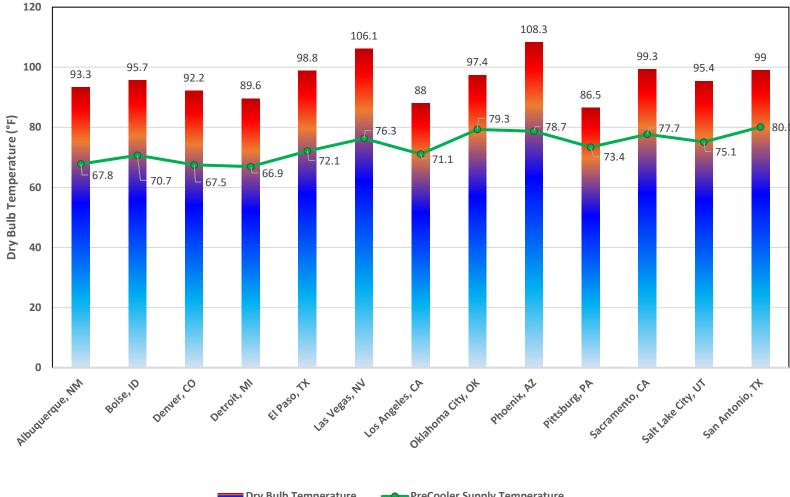
@ 2023 Rates =

\$23,471

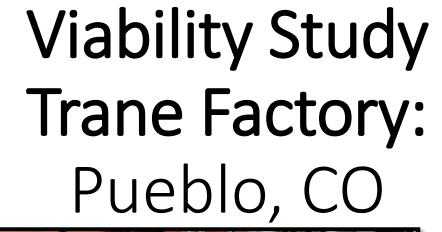
Less Water Costs =

\$21,799





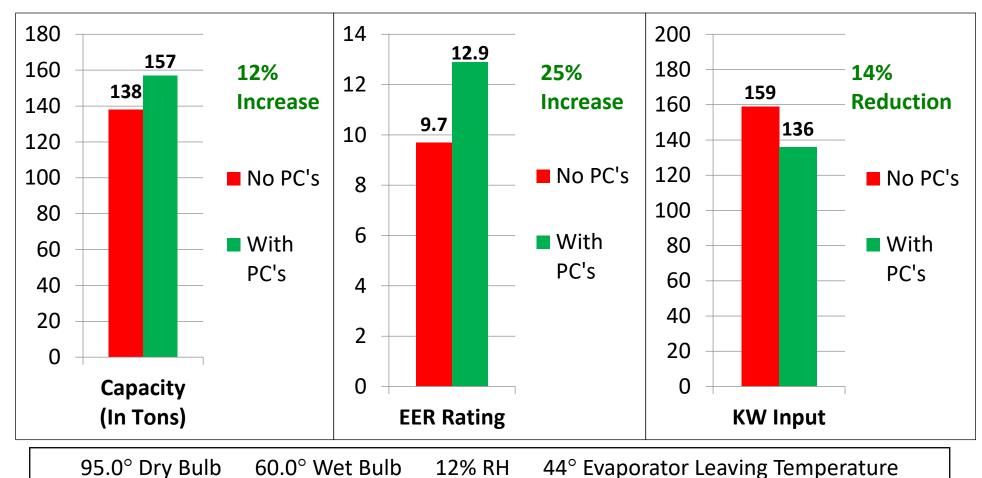
Evaporative PreCooling Performance Data


Dry Bulb Temperature Differential with Evap PreCoolers

(2017 ASHRAE 1% Design Dry Bulb vs PreCooler Supply Temperature)

AHRI Approved
Test Facility

Test Unit: Trane CGAM 140-Std


Hydr**EVAP** Specs:

- ✓ 7" Housing
- √ 4" Media
- ✓ No Block-Off Panels

Test Results – 12%RH

12% RH

44° Evaporator Leaving Temperature

60.0° Wet Bulb

Temperature Specific Data – 12%RH

Evaporative PreCooling Performance Data

Trane Factory: Pueblo, CO

"We were able to confirm benefit of the product...and we concluded that this is a viable product for the arid portions of the US, and we would like to promote it at that region."

-Todd Duncan Product Manager Scroll & Screw Chillers Trane

Performance Data Provided by Client

Date: 6/22 - 6/29/2012

Location: Highlands Ranch,

Colorado

Client: Douglas County

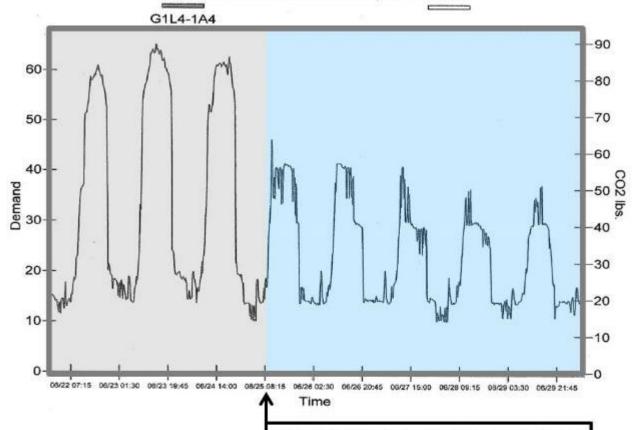
Ave. Temp: 93° F

Ave Humidity: 23% RH

Unit: Trane Intellipak

(40 Ton Unit)

On average that is nearly a 40% savings in kWh!

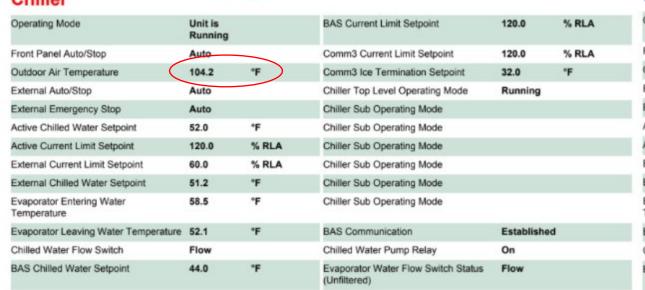


Hydr**EVAP** PreCoolers Installed

Performance Data - HydrEVAP

Chiller Service Report

Without PreCoolers



Wednesday, July 15, 2020 2:23:47 PM PDT

Chiller Status

Chiller

Wednesday, July 15, 2020 2:40:30 PM PDT

Chiller Status

Chiller

Chiller Service Report With PreCoolers

Performance Data - HydrEVAP Evaporative PreCoolers

Circuit 1	Without	PreCoo	lers			Circuit 1	With Pr	eCooler	"S		
Circuit 1 Sub Mode			Air Flow	85.7	%	Circuit 1 Sub Mode			Air Flow	85.7	%
Circuit 1 Sub Mode			Inverter Speed	0.0	% FullSpeed	Circuit 1 Sub Mode			Inverter Speed	0.0	% FullSpeed
Circuit 1 Sub Mode			Condenser Refrigerant Pressure	266.8	psi gauge	Circuit 1 Sub Mode			Condenser Refrigerant Pressure	170.8	psi gauge
Circuit 1 Sub Mode			Saturated Condenser Refrigerant Temperature	151.0	°F calculated	Circuit 1 Sub Mode			Saturated Condenser Refrigerant Temperature	119.8	*F calculated
Circuit 1 Sub Mode			Differential Refrigerant Pressure	222.7	psid	Circuit 1 Sub Mode			Differential Refrigerant Pressure	128.0	psid
Circuit 1 Sub Mode			Evaporator Refrigerant Pressure	43.7	psi gauge	Circuit 1 Sub Mode			Evaporator Refrigerant Pressure	42.8	psi gauge
Circuit 1 Top Level Operating Mode	Running		Saturated Evaporator Refrigerant Temperature	48.3	°F calculated	Circuit 1 Top Level Operating Mode	Running		Saturated Evaporator Refrigerant Temperature	47.4	°F calculated
External Hardwired Lockout	Not Locked Out	l	EXV Position	38.5	% Open	External Hardwired Lockout	Not Locked Out		EXV Position	44.2	% Open
Front Panel Lockout	Not Locked Out		Evaporator Refrigerant Liquid Level	-0.1	in	Front Panel Lockout	Not Locked Out		Evaporator Refrigerant Liquid Level	-0.2	in
Circuit 2						Circuit 2					
External Hardwired Lockout	Not Locked Out		EXV Position	100.0	% Open	External Hardwired Lockout	Not Locked Out		EXV Position	83.0	% Open
Front Panel Lockout	Not Locked Out		Evaporator Refrigerant Liquid Level	-0.3	in	Front Panel Lockout	Not Locked Out		Evaporator Refrigerant Liquid Level	-0.0	in
Air Flow	100.0	%	Circuit 2 Top Level Operating Mode	Running		Air Flow	100.0	%	Circuit 2 Top Level Operating Mode	Running	
Inverter Speed	100.0	% FullSpeed	Circuit 2 Sub Mode			Inverter Speed	100.0	% FullSpeed	Circuit 2 Sub Mode		
Condenser Refrigerant Pressure	177.1	psi gauge	Circuit 2 Sub Mode			Condenser Refrigerant Pressure	114.2	psi gauge	Circuit 2 Sub Mode		
Saturated Condenser Refrigerant Temperature	122.2	°F calculated	Circuit 2 Sub Mode			Saturated Condenser Refrigerant Temperature	95.1	F calculated	Circuit 2 Sub Mode		
Differential Refrigerant Pressure	132.5	psid	Circuit 2 Sub Mode			Differential Refrigerant Pressure	68.7	psid	Circuit 2 Sub Mode		
Evaporator Refrigerant Pressure	44.8	psi gauge	Circuit 2 Sub Mode			Evaporator Refrigerant Pressure	45.1	psi gauge	Circuit 2 Sub Mode		
Saturated Evaporator Refrigerant Temperature	49.3	°F calculated	Circuit 2 Sub Mode			Saturated Evaporator Refrigerant Temperature	49.6	°F calculated	Circuit 2 Sub Mode		

Compressor 1A Without PreCoolers

Run Hours	11187:29	hrs:mins	Intermediate Oil Pressure	248.6	psi gauge
Starts	1,929		Female Step Loader	Load	
Phase A-B Voltage	462	volts	High Pressure Cutout Switch	Good	
Average Line Current	97.1	% RLA	Compressor 1A Operating Mode	Running	
Line 1 Current	193.0	amps	Compressor 1A Top Level Operating Mode	Running	
Line 2 Current	200.0	amps	Compressor 1A Sub Mode		
Line 3 Current	188.0	amps	Compressor 1A Sub Mode		
Line 1 Current	96.6	% RLA	Compressor 1A Sub Mode		
Line 2 Current	100.0	% RLA	Compressor 1A Sub Mode		
Line 3 Current	94.3	% RLA	Compressor 1A Sub Mode		
Maximum Line Current	100.0	% RLA	Compressor 1A Sub Mode		
Supply Oil Temperature	189.6	°F			

Compressor 1B

Compressor 12					
Run Hours	11252:47	hrs:mins	Intermediate Oil Pressure	248.0	psi gauge
Starts	1,923		Female Step Loader	Load	
Average Line Current	82.5	% RLA	High Pressure Cutout Switch	Good	
Line 1 Current	163.0	amps	Compressor 1B Operating Mode	Running	
Line 2 Current	171.0	amps	Compressor 1B Top Level Operating Mode	Running	
Line 3 Current	161.0	amps	Compressor 1B Sub Mode		
Line 1 Current	81.6	% RLA	Compressor 1B Sub Mode		
Line 2 Current	85.5	% RLA	Compressor 1B Sub Mode		
Line 3 Current	80.6	% RLA	Compressor 1B Sub Mode		
Maximum Line Current	85.1	% RLA	Compressor 1B Sub Mode		
Supply Oil Temperature	189.5	°F	Compressor 1B Sub Mode		

Compressor 1A With PreCoolers

Run Hours	11187:40	hrs:mins	Intermediate Oil Pressure	159.8	psi gauge
Starts	1,929		Female Step Loader	Load	
Phase A-B Voltage	465	volts	High Pressure Cutout Switch	Good	
Average Line Current	60.7	% RLA	Compressor 1A Operating Mode	Running	
Line 1 Current	120.0	amps	Compressor 1A Top Level Operating Mode	Running	
Line 2 Current	125.0	amps	Compressor 1A Sub Mode		
Line 3 Current	118.0	amps	Compressor 1A Sub Mode		
Line 1 Current	59.9	% RLA	Compressor 1A Sub Mode		
Line 2 Current	63.0	% RLA	Compressor 1A Sub Mode		
Line 3 Current	59.1	% RLA	Compressor 1A Sub Mode		
Maximum Line Current	63.1	% RLA	Compressor 1A Sub Mode		
Supply Oil Temperature	146.1	°F			

Compressor 1B

Run Hours	11252:58	hrs:mins	Intermediate Oil Pressure	160.0	psi gauge
Starts	1,923		Female Step Loader	Load	
Average Line Current	61.0	% RLA	High Pressure Cutout Switch	Good	
Line 1 Current	120.0	amps	Compressor 1B Operating Mode	Running	
Line 2 Current	126.0	amps	Compressor 1B Top Level Operating Mode	Running	
Line 3 Current	119.0	amps	Compressor 1B Sub Mode		
Line 1 Current	60.1	% RLA	Compressor 1B Sub Mode		
Line 2 Current	63.3	% RLA	Compressor 1B Sub Mode		
Line 3 Current	59.8	% RLA	Compressor 1B Sub Mode		
Maximum Line Current	63.3	% RLA	Compressor 1B Sub Mode		
Supply Oil Temperature	146.1	°F	Compressor 1B Sub Mode		

Compressor 2A Without PreCoolers

Run Hours	11316:07	hrs:mins	Intermediate Oil Pressure	166.3	psi gauge
Starts	1,916		Female Step Loader	Unload	
Average Line Current	55.2	% RLA	High Pressure Cutout Switch	Good	
Line 1 Current	107.0	amps	Compressor 2A Operating Mode	Running	
Line 2 Current	115.0	amps	Compressor 2A Top Level Operating Mode	Running	
Line 3 Current	107.0	amps	Compressor 2A Sub Mode		
Line 1 Current	53.5	% RLA	Compressor 2A Sub Mode		
Line 2 Current	57.7	% RLA	Compressor 2A Sub Mode		
Line 3 Current	53.5	% RLA	Compressor 2A Sub Mode		
Maximum Line Current	58.1	% RLA	Compressor 2A Sub Mode		
Supply Oil Temperature	159.8	°F	Compressor 2A Sub Mode		
	\sim				

Compressor 2A With PreCoolers

-					
Run Hours	11316:17	hrs:mins	Intermediate Oil Pressure	46.1	psi gauge
Starts	1,916		Female Step Loader	Unload	
Average Line Current	0.0	% RLA	High Pressure Cutout Switch	Good	
Line 1 Current	0.0	amps	Compressor 2A Operating Mode	Stopped	
Line 2 Current	0.0	amps	Compressor 2A Top Level Operating Mode	Auto	
Line 3 Current	0.0	amps	Compressor 2A Sub Mode		
Line 1 Current	0.0	% RLA	Compressor 2A Sub Mode		
Line 2 Current	0.0	% RLA	Compressor 2A Sub Mode		
Line 3 Current	0.0	% RLA	Compressor 2A Sub Mode		
Maximum Line Current	0.0	% RLA	Compressor 2A Sub Mode		
Supply Oil Temperature	122.9	°F	Compressor 2A Sub Mode		

Compressor 2B

Run Hours	11206:49	hrs:mins	Intermediate Oil Pressure	164.6	psi gauge	R
Starts	1,926		Female Step Loader	Load		S
Average Line Current	75.1	% RLA	High Pressure Cutout Switch	Good		A
Line 1 Current	148.0	amps	Compressor 2B Operating Mode	Running		Li
Line 2 Current	155.0	amps	Compressor 2B Top Level Operating Mode	Running		Li
Line 3 Current	145.0	amps	Compressor 2B Sub Mode			Li
Line 1 Current	74.4	% RLA	Compressor 2B Sub Mode			Li
Line 2 Current	78.0	% RLA	Compressor 2B Sub Mode			Li
Line 3 Current	72.9	% RLA	Compressor 2B Sub Mode			Li
Maximum Line Current	78.1	% RLA	Compressor 2B Sub Mode			M
Supply Oil Temperature	159.8	°F	Compressor 2B Sub Mode			S

Compressor 2B

Run Hours	11207:00	hrs:mins	Intermediate Oil Pressure	106.5	psi gauge
Starts	1,926		Female Step Loader	Load	
Average Line Current	55.6	% RLA	High Pressure Cutout Switch	Good	
Line 1 Current	109.0	amps	Compressor 2B Operating Mode	Running	
Line 2 Current	115.0	amps	Compressor 2B Top Level Operating Mode	Running	
Line 3 Current	108.0	amps	Compressor 2B Sub Mode		
Line 1 Current	54.7	% RLA	Compressor 2B Sub Mode		
Line 2 Current	58.0	% RLA	Compressor 2B Sub Mode		
Line 3 Current	54.1	% RLA	Compressor 2B Sub Mode		
Maximum Line Current	57.9	% RLA	Compressor 2B Sub Mode		
Supply Oil Temperature	126.4	°F	Compressor 2B Sub Mode		

Performance Data - HydrEVAP Evaporative PreCoolers

Wednesday, July 15, 2020 2:23:47 PM PDT

Chiller Status

Chiller

Chiller Service Report
Without PreCoolers

Wednesday, July 15, 2020 2:40:30 PM PDT

Chiller Status
Chiller

Chiller Service Report
With PreCoolers

Tons: 453.5 Tons: 537.0 Increase of 83.5 Tons + 18%

kW: 1,492.4 kW: 853.5 Reduction of 638.9 kW - 43%

kW/Ton: 3.29 kW/Ton: 1.58 Reduction of 1.7 kW/Ton - 52%

Performance Data - HydrEll

Wednesday, July 15, 2020 2:40:30 PM PDT

Chiller Status Chiller

Chiller Service Report With PreCoolers

x 6 units

Like having a 7th Chiller! Increase of 501 Tons!

Reduction of 3,833.4 kW! **During peak demand!**

Reach setpoint without running 6 compressors!

ATEC/Indirex

Tel: (303) 816-7075 Fax: (800) 859-5592

Info@haveacoolday.com

Sales Representative: Erik Jeanette

Quotation: HEQ103017 Arvada West High School Chiller

Hydr**EVAP**

Contact: Maggie Anderson

Project: Avada West High School Chiller

Date: 30-Oct-17

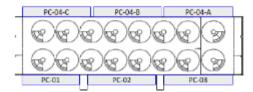
Model: McQuay AGS275DS

Location: Arvada, CO

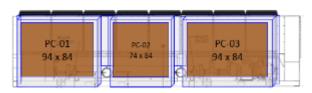
Evaporative PreCooler Equipment Selection Information

	Inpu	ıt Information - Conditions for Evaluatio	n
Ambient:	93 (F°) Dry Bulb	59 (°F) Wet Bulb	13% Relative Humidity

Unit 1:	AC Unit Performance Data:						
McQuay AGS275DS	Standard (No PC's) With PreCoolers % Change						
Cooling Capacity	268.4 TONS	283 TONS	5%				
(Tons)	Increase in Coolii	Increase in Cooling Capacity of : 14.2					


Energy Consumption	301.3	kW	213 kW	29%
(kW Input)		Red	luction in kW of : 88.7	29/0

Energy Efficiency (EER)	10.2 EER	15.1 EER	48%
(Energy Efficiency Rating)	(Increase in Ene	40%	


McQuay AGS275DS	Standard (No PC's)	With PreCoolers	Savings
Cost of Energy - Annual	\$65,915	\$46,503	\$19,412
Cost of Energy - Lifetime	\$988,723	\$697,538	\$291,185

McQuay AGS275DS	Equipment Payback in :	1.1 Years
Return On Investment	Lifetime Savings - After PreCooler Cost	\$270,183

Plan View

Elevation View 1

Elevation View 2

			1	I .				
	PreCooler P	rice	Optional Equ	ipment		Ch	iller	
ID#	Per Chiller		Per Chiller		Qty	Su	bTotal	Ш
Unit 1	\$ 2	27,744.43	\$	3,757.83	1	\$	31,502.26	
McQuay AGS275DS	Total Est. Shipping Weight: 535					-		
_	Notes:							
	\$ 1	16,995.00			1	\$	16,995.00	
Installation	Notes: Insta	llation doe	s not include	providing wat	er source or]		
	electrical red	quirements	to chiller vici	nity.				
	\$	1,395.00			5	\$	6,975.00	
Annual Service	Notes: Sprin	g start-up,	, Mid-Summe	r check, Fall	shut-down.]		
	Replacemen	t pumps ir	ncluded, exclu	udes media r	eplacement.			_
Efficiency Works	\$ (4	11,250.00)			1	\$	(41,250.00)	1
rebate with 50%	Standard +	Bonus reb	ate \$150/nom	ninal ton				7
bonus								
								Ш
								6
				PreCoo	ler SubTotal	\$	14,222.26	
# of Pallets	2				zing Charge	_	250.00	(8)
Total Weight	785		Est. Sh	ipping/Handl	ing Charges	\$	1,000.00	
								28
								100
			Quote FOB:		co	\$	15,472.26	
	PreCoolers,	Shipping,	and Optional	Equipment				
					ıal Savings:		19,412.00	
			Estimated ROI (In Years/Seasons):			_	8.0	
			Estimated ROI (In Months):				3.5	
			Estimated Li	fetime Savi	ngs (15 yrs):	\$	275,707.74	F
								T
								T

Efficiency Works rebates

Evaporative Condensing

Evaporative pre-cooling incentives

Equipment upgrade	Description Incentive		Limited time incentive		
Evaporative Condensing	Evaporative media or mist to pre-cool air entering the condenser of a rooftop unit (RTU) or air-cooled chiller. In the unlikely event that the evaporative equipment damages a condenser or part of a condenser, and it is less than 15 years old, the manufacturer shall replace the condenser or damaged part of the condenser and pay for the cost of the study to determine the cause of failure.	\$100 p	per ton	\$150	per ton

- For a limited time, a 50% bonus is available for cooling rebates. Projects must be completed and submitted for payment by November 15, 2023.
- Preapproval is required for all projects with incentives greater than \$10,000
- Incentives are limited to total project cost for projects with incentives less than \$50,000

Questions?

Bryan Curtis

Evaporative Solutions

720-933-8606

bcurtis@evaporativesolutions.com

Thank you for participating in Efficiency Works Business

Business@EfficiencyWorks.org

<u>EfficiencyWorks.org</u>